
3 t i ? Check Point fw monitor cheat sheet – 20180929
by Jens Roesen

fw monitor Quick Facts
fw monitor is part of every FW-1 installation and the syntax is the same for all possible
installations. Contrary to snoop or tcpdump, fw monitor does not put an interface into
promiscuous mode because it works as a kernel module. Therefore, fw monitor can capture
packets on different positions of the FW-1 chain and on several interfaces at once but fw
monitor won’t display any MAC addresses because it's not working on layer 2.

Capture files written with fw monitor can be read with snoop, tcpdump or Wireshark. You
can configure Wireshark to show the packet direction by checking “Interpret as FireWall-1
monitor file” under “Protocols → Ethernet” in the preferences and adding an additional column
with type “FW-1 monitor if/direction” in “Apperance → Columns”.

Remark: Any policy install or uninstall will cause fw monitor to exit.
Remark: Disable SecureXL (fwaccel off or fwaccel6 off) before running fw monitor.

Remark: Try to use fw monitor in expert mode, clish sometimes breaks it.

Protocol Header Review (field length in bits in brackets)
IP Header:
0 8 16 24 32
ver (4) hrd len

(4)
type of service (8) total length (16)

identification (16) flg
(3)

fragment offset (13)

time to live (8) protocol (8) header checksum (16)
source IP address (32)

destination IP address (32)

ICMP Header:
0 8 16 24 32

ICMP type (8) ICMP code (8) ICMP checksum (16)
ICMP message body (size depending on ICMPv6 type and code)

IPv6 Header:
0 8 16 24 32
ver (4) traffic class (8) flow label (20)

payload length (16) next header (8) hop limit (8)
source IPv6 address (128)

destination IPv6 address (128)

ICMPv6 Header:
0 8 16 24 32
ICMPv6 type (8) ICMPv6 code (8) ICMPv6 checksum (16)

ICMPv6 message body (size depending on ICMPv6 type and code)

UDP Header:
0 8 16 24 32

UDP source port (16) UDP destination port (16)
UDP length (16) UDP checksum (16)

TCP Header:
0 8 16 24 32

TCP source port (16) TCP destination port (16)
sequence number (32)

acknowledgment number (32)

hdr len
(4)

Re-
served
(3)

NS
C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

window size (16)

checksum (16) urgent pointer (16)

Useful Links
sk30583 Check Point sk30583 - What is FW Monitor?

How-To “How to use fw monitor” PDF by Check Point. Last updated 2003. ¯_(ツ)_/¯

tcpdump101 Generate CLI capture commands for several tools, incuding fw monitor.

fw1-dump.sh Script by AREAsec for using fw monitor with tcpdump syntax.

Ginspect Generate inspect and tcpdump expressions online.


fw monitor Cheat Sheet, 2018, current version available at http s ://roesen.org . Licensed

under Creative Commons BY – NC – SA License. FireWall-1, Endpoint Connect VPN Client
and VSX are registered trademarks of Check Point Software Technologies, Ltd.

fw monitor Syntax and Options
fw monitor [-h] [- u|s] [-i] [-d] [-T] [{-e expr}+|-f <filter-file>|-]
[-l len] [-m mask] [-x offset[,len]] [-o <file>] <[-pi pos] [-pI pos] [-
po pos] [-pO pos] | -p all [-a]> [-ci count] [-co count] [-v <vsid>]

-h Print usage message
-u|s Show UUID or SUUID for every packet.
-i Captured package data is written to standard out at once.
-d / -D debugging or even more debugging.
-T Show date and timestamp for every processed packet. Not needed with -o.
-e <expr> Set capture filter expression on the command line.
-f <file> Read capture filter from file with filter expressions.
-f - Read filter from standard input (end with ^D).
-l <len> Limit packet data which will be read.
-m <mask> Define which packets from which position in the FW-1 chain to display.
-x Print raw packet data. Can be limited.
-o <file> Write packet capture to specified file instead of standard out.
-p[x] pos
-p all

Insert fw monitor at a specific position in the FW-1 chain, replace x with i
(pre-in), I (post-in), o (pre-out) or O (post-out) or all for everywhere.

-a Use absolute chain positions instead of relative ones when using -p all.
-ci <count> Stop capture after count incoming packets.
-co <count> Stop capture after count outgoing packets.
-v <vsid> Capture on a specific virtual machine (only FW-1 VSX).

FW-1 Chain, Capture Masks and Positioning
Per default, the fw monitor kernel module will capture traffic at different FW-1 chain positions
(inspection points) relative to the Virtual Machine within the chain:

i pre-inbound, before the VM on the incoming interface
I post-inbound, after the VM on the incoming interface
o pre-outbound, before the VM on the outgoing interface
O post-outbound, after the VM on the outgoing interface
e pre-encryption, only with enabled IPSec VPN Software Blade
E post-encryption, only with enabled IPSec VPN Software Blade

While running fw monitor, you can check its chain positions using the command fw ctl
chain on a second terminal. Of course, when dealing with IPv6, use fw6 instead of fw:

in chain (8):
 0: -70000000 (8b442e70) (ffffffff) fwmonitor (i/f side)
 1: - 1fffff8 (8b46f300) (00000001) Stateless verifications (in) (asm)
 2: 0 (8b40a980) (00000001) fw VM inbound (fw)
 3: 10 (8b420450) (00000001) fw accounting inbound (acct)
 4: 70000000 (8b442e70) (ffffffff) fwmonitor (IP side)
 5: 7f600000 (8b462a00) (00000001) fw SCV inbound (scv)
 6: 7f730000 (8b68c7b0) (00000001) passive streaming (in) (pass_str)
 7: 7f750000 (8b7dc5d0) (00000001) TCP streaming (in) (cpas)
out chain (8):
 0: -70000000 (8b442e70) (ffffffff) fwmonitor (i/f side)
 1: - 1fffff0 (8b7dc810) (00000001) TCP streaming (out) (cpas)
 2: - 1ffff50 (8b68c7b0) (00000001) passive streaming (out) (pass_str)
 3: - 1f00000 (8b46f300) (00000001) Stateless verifications (out) (asm)
 4: 0 (8b40a980) (00000001) fw VM outbound (fw)
 5: 70000000 (8b442e70) (ffffffff) fwmonitor (IP side)
 6: 7f000000 (8b420450) (00000001) fw accounting outbound (acct)
 7: 7f700000 (8b7dca10) (00000001) TCP streaming post VM (cpas)
The pre-inbound module (i) is located at position 0 and the post-inbound (I) module at
position 4 of the in chain, pre-outbound (o) is sitting at position 0 and post-outbound (O) at
position 5 of the out chain. Depending on the activated blades and features the chain can be a
lot longer. You can use the names in brackets like (asm) for positioning. See below.

With the option -m <mask> you can define on which positions fw monitor should capture
packets: fw monitor -m iO would only capture pre-in and post-out. Default is set to iIoO.

With the -p option you can specify the position of each modules in the chain. You define the
relative position using a switch like -pO 6 to place the post-outbound module at position 6 in
the out chain. You can also use an alias like -pi -asm to place the pre-inbound module before
(-) the “Stateless verifications” module or -pi +asm to place it after (+) it. Absolute positioning
can be done by providing the absolute position in hex: -pi -0x1fffff4. Absolute position before
the VM have a negative value. With -p all modules will be placed everywhere in the chain.

Understanding fw monitor Output
Using fw monitor you will normally see two lines of output for each fw monitor filter
position in the FW-1 chain the packet passes. If the transport protocol (like TCP or UDP) is not
known to fw monitor (f.i. with encrypted traffic), the second line can be omitted. See the four
marked sections in the following example from an SSH to the gateway running fw monitor:

fw monitor
 monitor: getting filter (from command line)
 monitor: compiling
monitorfilter:
Compiled OK.
 monitor: loading
 monitor: monitoring (control-C to stop)
[fw_1]eth1:i[60]: 192.168.4.57 -> 192.168.42.80 (TCP) len=60 id=3017
TCP: 60386 -> 22 .S.... seq=1eaf882c ack=00000000
[fw_1]eth1:I[60]: 192.168.4.57 -> 192.168.42.80 (TCP) len=60 id=3017
TCP: 60386 -> 22 .S.... seq=1eaf882c ack=00000000
[fw_1]eth1:o[60]: 192.168.4.80 -> 192.168.42.57 (TCP) len=60 id=1166
TCP: 22 -> 60386 .S..A. seq=bb543e77 ack=1eaf882d
[fw_1]eth1:O[60]: 192.168.4.80 -> 192.168.42.57 (TCP) len=60 id=1166
TCP: 22 -> 60386 .S..A. seq=bb543e77 ack=1eaf882d
[...]

Section  tells us that the the packet was captured on the interface eth1 in inbound direction
(eth1:i) before reaching the virtual machine/the rulebase itself (i, pre-inbound). The packet
length is [60] bytes, the source of the packet is 192.168.4.57 and it's destination is
192.168.42.80, it carries (TCP), has, again, a length of len=60 bytes and the ID id=3117.
The two length indicators can differ when dealing with fragmentation. In that case, the one in
square brackets is the defragmented size and the second is the size of the fragment.
The second line of  shows us source (60386) and destination (22) ports, that the SYN flag is
set (.S....) and sequence and acknowledged sequence numbers in HEX. In  we see the
packet after passing the inbound FW VM.

In section  fw monitor displays a response packet as again seen on eth1 in the o position
(eth1:o) - before entering the firewall VM in the outgoing chain. It has a different ID, source
and destination address as well as ports switched places, there are now SYN and ACK flags
present (.S..A.), a new sequence number and the acknowledged sequence number of the
first packet. In  we can see the packet after passing the firewall VM.

Depending on your filter and the traffic you are capturing you will get different results. Packets
passing the gateway may be displayed in iIoO, IP addresses may change due to NATing pp.

UUID and SUUID
Using the option -u or -s fw monitor shows the corresponding universal unique identifiers
(UUID) or session UUID (SUUID) of the packet in the first line of the output. The UUID/SUUID
consist of 4 32-bit integers: UNIX time, a counter, the gateway IP and a process number.

The SUUID is basically the same concept as UUID, but for services like ftp which need to have
several connections (control an data connection), the SUUID stays the same for all these
connections whereas there will be unique UUIDs for each of the separate connections.

Note that the first packet of a captured connection won't have an UUID pre-inbound, so the
UUID field is all zeros. After passing the VM for the first time the connection gets it's UUID.

fw monitor -e 'accept host(192.168.42.57) and port(22);' -u
 monitor: getting filter (from command line)
 [...]
[fw_2] [00000000 - 00000000 00000000 00000000 00000000]:eth1:i[60]:
192.168.4.57 -> 192.168.42.80 (TCP) len=60 id=5172
TCP: 60446 -> 22 .S.... seq=086a3590 ack=00000000
[fw_2] [5ca20000 - 5b8ba25c 00000000 502aa8c0 c0000002]:eth1:I[60]:
192.168.4.57 -> 192.168.42.80 (TCP) len=60 id=5172
TCP: 60446 -> 22 .S.... seq=086a3590 ack=00000000
[fw_2] [5ca20000 - 5b8ba25c 00000000 502aa8c0 c0000002]:eth1:o[60]:
192.168.4.80 -> 192.168.42.57 (TCP) len=60 id=0
TCP: 22 -> 60446 .S..A. seq=589052f6 ack=086a3591
[...]

In front of the UUID and seperated by a hyphen you’ll see a manipulated version of the UUID.
This 32-bit UUID will be placed in the last 32-bit of the destination mac address field in the
ethernet frame of a capture file if the options -u or -s were used. Remember that fw monitor
does not capture mac addresses. So the 12 bytes which would normally contain source and
destination MAC are filled with packet direction and chain position (2 bytes), interface name (6
bytes) and UUID (4 bytes).

With UUIDs and SUUIDs you can easily follow packets through the firewall without having to
worry for instance about NATing or protocols which use several connections like FTP.






→

→

no UUID pre-in

UUID set post-in→
→

mailto:contact@roesen.org?Subject=CLI%20RefCard%20Feedback
https://tcpdump101.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.roesen.org/
https://www.roesen.org/
https://www.roesen.org/
https://www.vandeneynde.net/ginspect/
http://www.fw-1.de/aerasec/ngx/fwmonitor.html
http://downloads.checkpoint.com/dc/download.htm?ID=9068
https://supportcenter.checkpoint.com/supportcenter/portal?eventSubmit_doGoviewsolutiondetails=&solutionid=sk30583
https://roesen.org/
https://www.linkedin.com/in/jroesen/
https://www.twitter.com/rfc3849

Filter Expressions Basics
Filtering in fw monitor is done by filter expressions written in a subset of Check Points
Inspect language which are read from the command line with the -e option, from a file passed
over with the -f option or read from standard input with -f -. The syntax for either way is

accept expression;
where accept does not mean the packet has to be accepted by the rulebase, just the filter has
to accept the packet. You can also append the accept to the expression, separated by a
comma.

expression, accept;

Make sure this syntax is always properly quoted by single (') or double quotes (“) to protect it
from the shell.

A simple expression is written in the following syntax

[offset:length,order] operator value
where offset is the offset in bytes from were fw monitor should start reading value. The
length states for how many bytes (1,2 or 4) fw monitor should read the value. If no length
is given, 4 bytes will be read. The order defines the byte order as b (big endian) or l (little
endian) where l is the default when order is not given. The operator can be a relational or
logical operator.

relational operators
< less than
> greater than
<= less than or equal to
>= greater than or equal to

is or = equal

is not or != not equal

logical operators
and logical AND
, logical AND
or logical OR
xor logical XOR
not logical NOT

value is one of the data types hex integers, octal integers, decimal integers or IP addresses.

So with an IP header size of 20 bytes, a simple fw monitor call with an expression to filter
packets with the destination port 22 (SSH) would be

fw monitor -e 'accept [22:2,b]=22;'

or when using IPv6 with its fixed 40 byte IP header size, not taking possible extension headers
into account (see examples for that problem) and an alternate relational operator

fw6 monitor -e 'accept [40:2,b] is 22;'

Explanation: Start filtering after the 22nd (40th with the IPv6 example) byte from the beginning
of the IP packet and then for the next 2 bytes in big endian byte order look for the value “22”.

To filter for anything except SSH you have to add logical operators. Something like

fw monitor -e 'accept [20:2,b]!=22 and [22:2,b]!=22;'
Using hex to look for packets with SYN and ACK flags set:

fw monitor -e 'accept [33:1]=0x12;'

A filter for the source IP address 10.10.1.70 would be

fw monitor -e 'accept [12,b]=10.10.1.70;'

An IPv4 address is 4 bytes long, so we can omit the length, as 4 bytes is the default value. But
since 4 bytes is the maximum supported length value, you can’t filter for IPv6 addresses this
way – [8:16] and [24:16] will be rejected with “ERROR: invalid length: 16”. You can
however use [8:ipv6] and [24:ipv6] to filter for IPv6 source and destination addresses ;)

A notable exception from this byte specific syntax is ifid. With ifid you can limit the capture
to specific interface IDs. A list of the current interfaces and their corresponding IDs can be
displayed by fw ctl iflist. Example limiting the capture to two interfaces:

fw monitor -e 'accept ifid is 1 or ifid is 3;'

packetmon on a Endpoint Connect VPN Client (E75.30 and up)
To capture traffic on a Endpoint Connect client you have to use the tool PacketMon.exe
located in your Endpoint Connect installation dir. The syntax is similar to the fw monitor one.
At least with the old tool, srfw.exe, it was safer to just capture all traffic and use Wireshark
for filtering, since some syntax option were simply and silently ignored. I’d suggest to do the
same with packetmon unless you confirmed that all options are working as intended.

PacketMon.exe -o capture_file.cap

 See sk95486 for more information and additional links.

Filtering with Macros
Filtering gets a lot easier when using macros. There are several macros, mostly defined in two
files: $FWDIR/lib/tcpip.def and $FWDIR/lib/fwmonitor.def. The macros defined in
fwmonitor.def often use tcpip.def macros which then point to the actual expression.

Here are two examples of macros and to which definition and expression they point to (→):

Macro Defined in fwmonitor.def Defined in tcpip.def Final expression
src src → ip_src ip_src → [12,b] (for IPv4) [12,b] (for IPv4)
tcp tcp → ip_p=PROTO_tcp ip_p → [6:1] (for IPv6)

PROTO_tcp → 6
[6:1]=6 (for IPv6)

These are some oft the most helpful macros defined in above mentioned files aside from the
obvious ones like http, https, dns, ftp, tcp or udp which don't need further explanation.

Macro Explanation
port(port) Filters for packets with port as source or destination port.
host(addr) Filters for addr as source or destination address.
sport operator port Filters for packets where source port is operator port.
dport operator port Filters for packets where destination port is operator port.
ip_p operator proto Capture packets with matching IANA protocol/nh number.
src operator addr Filters for packets where source address is operator addr.
dst operator addr Filters for packets where destination address is operator

addr.
icmp4 Filters for ICMPv4 packets.
icmp6 Filters for ICMPv6 packets.
tcpport(port) Filter TCP traffic to or from port port.
udpport(port) Filter UDP traffic to or from port port.
icmp_error Filters for ICMP packets of the following types: destination

unreachable (3), source quench (4), redirect (5), time exceeded
(11) or parameter problem (12).

ping Filters for ICMP echo request and ICMP echo reply packets.
ike Filters for packets with port 500.
natt Filters for packets with port 4500.
tracert Filters for packets specific to the Windows tracert command:

ICMP echo requests with a TTL below 30 or ICMP time exceeded
messages.

traceroute Packets specific to the Unix traceroute command: UDP
packets to destination port higher than 33000 (normal
traceroute starts with port 33434) and a TTL below 30 or
ICMP time exceeded messages.

net(net, masklen) Packets to or from the network net with the mask masklen.
from_net(net, masklen) Filters for packets from the network net with the mask

masklen.
to_net(net, masklen) Filters for packets to the network net with the mask masklen.
syn Filters for packets with SYN flag set.
ack Filters for packets with ACK flag set.
fin Filters for packets with FIN flag set.
first Filters for packets with the SYN flag but without ACK flag.
established Filters for packets with the ACK flag or without the SYN flag.
not_first Filters for packets without the SYN flag.
last Filters for packets with FIN and ACK flags set.
no_term Filters for everything other than SSH and Telnet traffic.
no_mgmt Filters for everything other than CP management traffic like

CPMI, CPD and AMON.
pull Filter for SIC certificate pulls from management server.
push Filter for SIC certificate pushes to gateways.
vpnd Filters for IKE, NAT traversal, UDP encapsulated IPSec, RDP, CP

topology updates, CP tunnel tests, L2TP and Secure Client
keepalives.

vpnall Filters for ESP, HTTPS and port 444, everything from vpnd, CP
CA CRL downloads and user registration with a policy server.

ip_ttl6 operator ttl Filters for IPv6 packets where hop limit/TTL is operator ttl.
ip_p6 operator nh Filter for IPv6 packets where next header field is operator nh.

Filtering with Filter Files
fw monitor can read all filter experssions from a file or even from standard input. Just put the
expression in a file and let fw monitor read it with the -f option.

echo "accept [22:2,b]!=22 and [20:2,b]!=22;" > /tmp/fwmon.filter
fw monitor -f /tmp/fwmon.filter
 monitor: getting filter (from /tmp/fwmon.filter)
 [...]
 monitor: monitoring (control-C to stop)
[fw_0] eth1:i[84]: 192.168.4.67 -> 192.168.42.80 (ICMP) len=84 id=48886
ICMP: type=8 code=0 echo request id=29701 seq=1

If you want to use macros inside a filter file, you have to include the appropriate definition file,
otherwise compiling will result in an error:

echo "accept sport!=22 and dport!=22;" > /tmp/fwmon.filter
fw monitor -f /tmp/fwmon.filter
 monitor: getting filter (from /tmp/fwmon.filter)
 monitor: compiling
monitorfilter:
"/opt/CPsuite-R80/fw1/tmp/monitorfilter.pf", line 1: ERROR: cannot find
<sport> anywhere
Compilation Failed.
 monitor: filter compilation failed
/opt/Cpsuite-R80/fw1/tmp/monitorfilter

To fix this, just add #include "fwmonitor.def" to the file above your filter expression.

echo '#include "fwmonitor.def"' > /tmp/fwmon.filter
echo "accept sport!=22 and dport!=22;" >> /tmp/fwmon.filter
fw monitor -f /tmp/fwmon.filter
 monitor: getting filter (from /tmp/fwmon.filter)
 monitor: compiling
monitorfilter:
Compiled OK.
 [...]

Examples

Show packets with IP 192.168.1.12 as SRC or DST:
fw monitor -e 'accept host(192.168.1.12);'

Show all packets from 192.168.1.12 to 192.168.3.3:
fw monitor -e 'accept src=192.168.1.12 and dst=192.168.3.3;'

Show all packets with SYN and ACK flags set:
fw monitor -e 'accept [33:1]=0x12;’

Show all packets with PUSH bit set:
fw monitor -e 'accept th_flags=TH_PUSH;’

Like last example, only for IPv6. Show all packets with SYN and ACK bit set, take possible IPv6
extension headers into account instead of assuming to deal with a 40byte IPv6 header:
fw6 monitor -e 'accept [PACKET_HDRLEN+13:1]=0x12;'

Show UDP port 53 (DNS) packets, pre-in position is before 'ipopt_strip':
fw monitor -pi ipopt_strip -e 'accept udpport(53);'

Show UPD traffic from or to unprivileged ports, only show post-out:
fw monitor -m O -e 'accept udp and (sport>1023 or dport>1023);'

Show Windows traceroute (ICMP, TTL<30) from and to network 192.168.1.0/24
fw monitor -e 'accept net(192.168.1.0,24) and tracert;'

Capture web traffic on VSX virtual system ID 23:
fw monitor -v 23 -e 'accept http or https;'

Show all CP management traffic between network 10.23.42.0/24 and 192.168.42.80:
fw monitor -e 'accept not no_mgmt and net(10.23.42.0, 24) and
host(192.168.23.1);'

Show IPv6 ICMP6 Router Advertisements:
fw6 monitor -e 'accept icmp6_type is ND_ROUTER_ADVERT;'

Show all ESP (IP protocol 50) packets on the interface with the ID 0:
fw monitor -e 'accept ip_p=50 and ifid=0;'

Show SMTP traffic including raw packet data after byte 52 and limit RAW output to 1500 bytes:
fw monitor -e 'accept smtp;' -x 40,1500

https://supportcenter.checkpoint.com/supportcenter/portal?solutionid=sk95486

